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On the spectral theory of Rayleigh’s piston 
I. The discrete spectrum 
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Department of Physics, Bedford College, University of London, Regent’s Park, London 
NWl, UK 

Received 5 December 1972, in final form 5 May 1973 

Abslract. The classic problem of Rayleigh’s piston is reconsidered in the light of modern 
transport theory. We investigate the velocity relaxation of a one-dimensional ensemble of 
test particles immersed in a similar heat bath at arbitrary mass ratio y, and obtain a new 
reduction of the integral collision operator to an infinite-order differential expansion more 
tractable than the conventional expression in powers of the mass ratio. In this way we 
prove that the number of nonzero discrete eigenvalues of the Rayleigh collision operator 
is always bounded for finite mass ratio, being in fact zero for the special case y = 1. By 
truncation of the collision operator expansion, a tentative bound is then obtained which 
suggests (subject to an unproved positive-definiteness condition) that the emptiness of the 
discretum actually extends over at least the mass ratio region 

The limit y + 0 may be studied and gives a novel approach to Rayleigh’s original solution 
under conditions of brownian motion. 

1. Introductioo 

‘Rayleigh’s piston’, arguably the simplest conceivable model in statistical dynamics, is 
remarkably little understood in spite of notable advances in transport theory which, 
80 years after Baron Rayleigh’s original formulation (Strutt 1891), seem to have over- 
taken this deceptively trivial-looking problem. 

Translated into contemporary language and generalized somewhat, the Rayleigh 
model may be specified as follows. Consider an ensemble of test particles, mass M ,  
constrained to move in one dimension and responding to random, impulsive collisions 
with a gas of heat-bath particles, mass m, having temperature T (figure 1). What is 
the evolution of a space and velocity distribution function P(V, I ,  t )  for the test particles 
from some given initial condition P(V, I ,  O)? More simply-and as in the original 
version-what is the evolution of the velocity distribution P( V, t )  for the corresponding 
spatially-homogeneous system? To these questions we may add others of more modern 
interest. What is the velocity autocorrelation function S,(t) for equilibrium fluctuations 
in the ensemble, or equivalently its power spectrum J,(o)? What is the space-time 
correlation function G(r, t )  for initial maxwellian velocities? 

A discussion of some aspects of these problems will be found in the classic papers 
by Uhlenbeck and Ornstein (1930) and Wang and Uhlenbeck (1945) and in more 
recent reviews by Lax (1960) and Hoare (1971). 
7 On leave of absence from the Department of Mathematics, Carleton University, Ottawa, Canada. 
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Figure 1. The Rayleigh piston. A piston of mass M and cross section U undergoes random 
collisions with a one-dimensional heat bath of particles, mass m. The velocities of the heat. 
bath particles are Maxwell distributed at temperature T and their number density is n 
per unit volume. 

Rayleigh’s original treatment and its modern extensions (see eg Green 1951, Van 
Kampen 1961, Akama and Siege1 1965a, b) are concerned almost exclusively with the 
limiting case M >> m, that is with very heavy test particles undergoing brownian motion 
in a light diluent gas. Only under these conditions is it possible to reduce the initial- 
value problem for P(V, t )  to that of a second-order integro-differential equation (the 
Rayleigh-Fokker-Planck equation) and obtain the well known closed form for the 
evolution of P( V, t )  to the equilibrium maxwellian : 

1 M ( V -  V, 
2kBT(1 -e-2rR) --___--- P(V, tR) = 

P(V, 0) = d(V- V,) 

Here CT is the cross-sectional area of the pistons and n the number density of the heat- 
bath particles. 

Both the limitations of this solution and the lack of rigour in its derivation have been 
widely acknowledged. It is known to falsify the behaviour at short times whatever the 
mass ratio y = m/M,  while the supporting theory gives no indication of how small y 
need actually be in order to give satisfactory solutions in the long-time regime. Even 
this minimal understanding must be sacrificed if the mass ratio is to be allowed arbitrary 
values in the range 0 < y < CO, a possibility excluded at the outset in all the classical 
treatments from the point of view of brownian motion. 

This general problem, for pistons of all possible relative masses and ensembles at 
all stages of evolution, will be explored in our present work. Considering first the 
spatially-homogeneous case, we begin by exhibiting a number of salient features of the 
integral collision operator d specifying the Markov process for P( V, t )  on the continuous 
space of velocity states - CO < V < 00. We go on to examine its spectral characteristics, 
restricting attention in this paper to the discrete part of the eigenvalue spectrum which, 
at least for certain ranges of y, can be expected to dominate the solution after long times. 

2. Preliminary formulation 

The transport equation for the velocity distribution function P(V, t )  of an ensemble of 
Rayleigh pistons is of ‘master equation’ type and can be written 

K( V’, V)P( V’, t )  d V’ - Z(  V)P( V, t ) .  (2.1) at 



Spectrum of the Rayleigh piston 1463 

Here K(V, V’) is the transition kernel giving the probability flux from velocity I/ to 
d V  about V’, while Z(  V )  is the velocity-dependent collision number obtained by integra- 
tion of K over all final states : 

+ m  

Z (  V )  = K( V, V’) d V’. 
-m 

Thus, if we wish to represent the initial-value problem in the compact form 

aP 
at 
- = d P  (2.3) 

the collision operator d must be taken as the symbolic integral operator 

d 3 K(  V’, V )  - Z (  V)6( V -  V). 

The difficulty and subtlety of the Rayleigh piston problem derives from the second, 
singular term, whose presence rules out any possibility of a reduction of the solution 
to a standard exercise in the theory of Markov processes. 

The explicit form of the transition kernel K was not given by Rayleigh, but has since 
been written by a number of workers (see eg Lebowitz and Bergmann 1957, Van Kampen 
1961). A simple accounting of collisions with conservation of momentum and energy 
shows it to be 

M 

Integration of this expression over all V’ then leads to the following for the collision- 
number function Z( V )  : 

Z ( V )  = n.[ Verf{( 5) 2k,T ”’V} + (s) ‘I’ exp {- (““)}I 2kBT ’ (2 .5)  

The equilibrium maxwellian for the ensemble is 

from which we may see that the kernel K(V, V‘) satisfies the detailed balance condition 

f M ( W w ,  V’) = f M W ‘ ) W ’ ,  v. (2 .7)  

It further follows from (2 .2)  and (2.7) that the maxwellian correctly satisfies the equilibrium 
condition dfM = 0. 

Before analysing the transport equation further it is convenient to make the following 
transformations to reduced variables. Let 



1464 M R Hoare and M Rahman 

I<( V, V')  d I/' and Z(  V )  reduce accordingly to 

and 

z(x) = e-x2 + n1/2x erf(x), 

while the maxwellian becomes 

(2.9) 

(2.10) 

Finally we make a separation of the variables in the form 

P(x, 7) = (~ , (x) ) ' /~&x)  e-'r (2.11) 

and, on substituting back, obtain the following integral operator eigenvalue problem 
for 4(x) and A :  

+ m  

(z(x) - M x )  = J- g(x9 Y)$(Y) dY9 

in which g(x, y) is now the symmetric kernel 

(2.12) 

with p and p defined by 

p = i ( l +  l/y)2; p = *( l / y 2  - 1). (2.14) 

The kernel g(x, y) proves to be square integrable on (- 30, CO) and, in fact, gives the 
norm 

11g1I2 = (g(x, Y ) ) ~  dx dy = --y3 1 +- . 
- m  16 t)' (2.15) 

A scale drawing showing the characteristic shape of the kernel k(x, y) is given in figure 2. 
The singular character of the initial-value problem now shows itself in equation 

(2.12) through the term (z(x) - A), which may evidently vanish at points xi. satisfying 
the condition z(x,) = A, for given A. As a result, the composition of a general solution 
from terms of type (2.11) presents unusual difficulties. The most relevant of these will 
be outlined in the following section. 

3. General properties of the transport equation 

The general properties of integro-differential equations of the type (2.1) have only been 
elucidated in comparatively recent time, largely through the work of theorists in the 
fields of plasma physics and neutron transport theory. Nevertheless, thanks to Van 
Kampen (1955), Case (1959, 1960), Koppel(1963), Ferziger (1965), KuSEer and Corngold 
(1965, 1966) and others (for reviews see Hoare 1971 and Williams 1971) the broad 
characteristics of the resulting initial-value solutions are now quite well understood. 
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Figure 2. The Rayleigh kernel in reduced velocities (equation (2.8)). The family of curves 
shows the value of k(x, y) as a function of y with x increasing from zero in increments of 0.05, 
for the particular mass ratio y = 0.5. The separate curves may be identified by their cusps 
on the horizontal axis at x = y. The curves for negative x are omitted since these are sym- 
metrical about the vertical axis by virtue of k( -x, y) = k(x, -y). As y + 0 the two peaks 
sharpen and encroach arbitrarily close at each side of the origin. 

Briefly, it is now realized that the evolution of a distribution function P(x,  z) governed 
by a transport equation of the present type must be expressed in the following way: 

P(X, 7) = P(X, a)+ 1 uk@k(x) e-akr + u(L)@(x, A) e-Ar dL (3.1) 
k Jasc 

The first term on the right is the equilibrium maxwellianf,(x) and the transient terms 
which follow involve respectively the discrete spectrum A k  and the continuous spectrum 
1 of the collision operator d. The functions @ are eigenfunctions, to be determined 
through solution of the singular integral equation d@ = A@ and related to those of 
equation (2.12) by @ = f ; I 2 + .  The equilibrium eigenvalue A. = 0 is always present, 
so long as particles are conserved, and accounts for the maxwellian term. The constants 
uk and the function u(A) must be fitted according to the initial distribution P(x,O), a 
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process only possible if the set of all eigenfunctions, for both discrete and continuous 
A can be demonstrated to be complete for a sufficiently inclusive function space. The 
reality of all eigenvalues is guaranteed by the detailed balance condition which, in the 
appropriate form, can always be used to obtain a symmetric eigenvalue equation such 
as (2.12) above. Positive-definiteness of the spectrum, and hence boundedness of 
solutions, is likewise guaranteed by the detailed-balance condition plus the special 
relationship (2.2) between k(x,  y) and z(x). 

In general, the continuum C fills that part of the positive real line for which a root 
x1 exists giving z(x,)-A = 0. In the Rayleigh problem, with time scaled as above, this 
is evidently possible for all A 2 z(0) = 1, so that the continuum fills the whole interval 
(1, CO). The discretum, 0 < A < 1 in the Rayleigh case, may, in general, either be empty, 
except for the single A,, = 0, or contain a finite number of eigenvalues, or an infinite 
number, necessarily with a point of accumulation. 

The continuum eigenfunctions O(x, 1) are not square integrable and are normally 
singular distributions in the sense of Schwartz; so long as they are present, the discrete 
eigehfunctions, even though possibly infinite in number, do not form a complete set, 
and the solution of the form (3.1) without the integral term can never be fully accurate 
at any stage of the evolution. Nevertheless, the deficient solution may still tend to an 
arbitrarily good approximation in a particular time regime for which the ‘continuum 
modes’ exp( - AT) become negligible. Thus, in cases such as the present one, in which the 
continuum is bounded from below, transients exp( - &T) with < 1 will rapidly 
dominate in the ‘aged’ system with reduced time appreciably greater than unity- 
provided always that the discretum does not prove to be empty. 

With these general considerations in mind, we shall describe the transformation of 
the singular eigenvalue problem (2.12) into an alternative form which provides valuable 
insight into the nature of the discrete spectrum and its functional dependence on the 
mass-ratio parameter y. The first step will be to carry out a Fourier transformation 
in the velocity variable leading to the removal of the integral operator term and its 
replacement by a differential operator expression of infinite order. This version of the 
eigenvalue problem retains its singular character and implies no restriction on the 
allowed range of y. In 6 6 a second-order differential operator approximation to this 
is derived which, while retaining singular character, leads to definite numerical predic- 
tions of the discrete eigenvalues, which prove to be either zero or finite in number 
according to the region of y. In 0 7 these results are then used to prove the finiteness of 
the set A k  for the unrestricted operator and to suggest tentative bounds to their number 
and values. We conclude with a brief discussion of the special cases y = 1 and y + 0. 

4. The collision-number function z(x) 

In addition to the general properties just considered, a number of simplifying features 
peculiar to the Rayleigh problem depend crucially upon characteristics of the collision- 
number function z(x). It will be convenient to specify these before beginning our main 
analysis of equation (2.12). 

We note that : 

(i) z (x )  is single valued and analytic for all x in the range ( -  00, 00). 
(ii) It is symmetric in x. z ( - x )  = z(x) .  
(iii) It is monotonic increasing in 1x1 from its minimum at z(0) = 1. 
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(iv) For large 1x1, z(x) - 1x1. 
(v) For small x, z(x) = 1 + x2 + O(x4). 

(vi) z(x) is infinitely differentiable with, in particular, 

z’(x) = 7F2 erf(x) 

z”(x) = 2 exp( -x2) 

and higher derivatives given by the Hermite functions : 

Dnz(x) = (- 1)”2 exp( - x2)Hn- z(x) (4.3) 

z”(x) + 2xz’(x) - 2z(x) = 0 (4.4) 

z(x) = , F , ( - ~ , f ;  -x2) (4.5) 

( n  2 2). 

(vii) z(x) satisfies the differential equation 

and is expressible as a special case of the confluent hypergeometric function 

with 

( (a ) ,  = a(a+ l )(a+2). . . ( a +  k -  1)). 

scale by 
(viii) The mean collision number per particle at equilibrium is given in the T time 

+ C O  

zoo = J- z(x)f,(x) dx = (1 + y) ’ ” .  

A scale drawing of the function ~(1x1) is given in figure 3. 
30 

(4.7) 

1x1 

Figure 3. The collision-number function ~(1x1) for Rayleigh pistons in terms of reduced 
speeds (equation (2.9)). The velocity collision-number curve is the same with symmetric 
reflection about the y axis. 
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5. Reduction and Fourier transformation 

It will prove convenient to treat the eigenvalue problem (2.8) first under the mass-ratio 
condition y < 1 (the Rayleigh regime), afterwards modifying our discussion slightly to 
cover the range y > 1 (the Lorentz regime). The special case y = 1 may be considered 
separately. 

A key step in the analysis of equation (2.12) is the recognition that, with slight 
modification of the eigenfunctions &x), the integral operator term on the right may be 
cast into the form of a convolution. Thus a Fourier transformation is indicated. 

Writing 

$44 = exp( - t X 2 ) W  

(z(x) - 4 e x 2 w  = 

~ ( x )  = plxl e-px2. (5.3) 

(5.1) 
the eigenvalue condition reduces to 

f m  

B(Y - X)$(Y) dY = B(x) * W) (5.2) s_ m 

with B(x) defined by 

Before taking advantage of the convolution, however, we must assure ourselves, 
not only of the existence of the transform of @(x), but also of that of the term z(x) ex2+(x). 
This demands that we satisfy both the normal condition, that +(x) be square integrable : 

(i) I(/(x) E L2(- 0, CO), 

z(x) exzt,b(x) E L,( - CO, CO). 

and the considerably stronger one that 

(ii) 

Given (i) and the property that z(x) is analytic and behaves as 1x1 as 1x1 -, CO, a sufficient 
condition for (ii) is that 

(iii) bw - exp{ - x2(1 + 4}, (€ > 0). 
x+ m 

Both conditions (i) and (iii) appear reasonable in as much as we are dealing with solutions 
having 1 in the discretum 1 < 1, while moreover the equilibrium solution #o(x) for 
A = 0 undoubtedly satisfies both so long as y e 1 : 

~cl~(x) = exp{-x2(:+6)} = exp{-x2( I+?)}, (5.4) 

Under these conditions we are then allowed to conclude that 

(iv) (1 + Ixl")lc/(x) E L2(- CO, a) 

and hence that the Fourier transform is n times differentiable with all derivatives, as well 
as the original transform, tending to zero at infinity (see eg Titchmarsh 1937, p 174). 

Let us denote the Fourier transform operation by F[+(x)] = $(k). Considering 
first the left-hand side of equation (5.2) we see that the transform may be obtained by 
writing this in the series form (4.5) and applying Kummer's relation (Erdelyi et al 1953, 
vol 1, p 253) to give 

z(x) ex2 = ex21Fl(-+, 4 ; - x2) = 1 ~ 1 ( ~ ,  3; x2). 
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Thus, since S[x2"$(x)] = (-  1)"D2"$(k) ( D  d/dk), the two transforms may be written 
symbolically in terms of the gaussian and confluent hypergeometric operators. Thus 

~ [ e ~ ' $ ( x ) ]  = e-D2$(k) (5 .5 )  

F[Z(X) ex'$(x)] = , F ~ ( I ,  4; - 0 2 ) $ ( k ) .  (5.6) 

and 

Turning now to the right-hand side of the equation, we see that the transformation 
of the integral may be achieved through the standard result : 

1 
/om t exp(-ut2)cos(kt) dt = - ,F1(l ,+;  2a -k2/4u) 

(Erdelyi 1954, vol 1, p 15). Using this we obtain from the convolution 

(5.7) 

This may also be reduced to a compact symbolic form by use of the confluent hyper- 
geometric operator. Noting the Rodriguez formula 

D2" exp( - b2k2)  = b2" exp( - b2k2)H2,(bk)  (5.9) 
where H,(bk)  is the Hermite polynomial of order n, and that there exists the expansion 

,,, = (2m) ! 
(5.10) 

(Erdelyi 1953, vol2, p 216). 
We find that the transform of the right-hand side of (5.2) can be written as 

S[B(x) * $(x)] = exp(b2k2)$(k) lFl(l, 4; - D 2 )  exp( - b2k2)  (5.11) 

with 

(5.12) 

In this way we arrive at the remarkable infinite-order differential equation 

A e - D'$( k )  = Fl ( 1 , 4 ; - D2)$( k )  - exp( b2 k2)$( k )  Fl ( 1,i ; - 0') exp( - b2 k2) .  (5.13) 

This version of the eigenvalue problem, formal as it is, remains exact and preserves 
the singular character of the original integral equation. One essential property is, 
moreover, quite transparent-the equilibrium solution, derived from (5.1) as 

(5.14) 

can be seen at a glance to satisfy it for 1 = 0. 
A number of possibilities suggest themselves for reducing this equation to a definite 

algorithm for obtaining numerical eigenvalues and eigenfunctions. One is to expand 
the latter as series in the Hermite functions exp( - b2k2)H,(bk) and use known relation- 
ships for the effect of D" and exp( - 0') on these. The orthogonality property then leads, 
by integration, to an infinite-matrix eigenvalue problem for the expansion coefficients. 
The advantage of this method, as against a direct Rayleigh-Ritz expansion applied to 
the integral equation, seems, however, slight. 

$,(k)  = S[~ ,b~(x ) ]  = exp( - b2k2)  
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The main importance of equation (5.13) for our present investigation is that it opens 
the way to a systematic approximation procedure which provides the tool we are 
seeking for a qualitative analysis of the discrete spectrum. The first steps in this are 
described in the next section. 

6. The second-order differential approximation 

Since the collision-number function z(x) has a minimum at x = 0 and is monotonic as 
1x1 increases, one would expect on the previous analysis that the eigenfunctions are 
perfectly well behaved except in the neighbourhood of the origin, where a sharp peak 
may develop. Physically this means that the interactions of the relatively slow-moving 
test particles with the heat bath are the dominant influence in the solution, particularly 
at times longer than the ‘continuum relaxation time’ z* = l/z(O) = 1. Thus, following 
previous studies of the spectra of more complicated three-dimensional kernels (see 
particularly KuSEer and Corngold 1966 and KuSEer and Williams 1967) it appears 
reasonable to concentrate attention on the behaviour of the eigenfunctions $(x) in the 
neighbourhood of x = 0. Our first move is to show that the lowest-order ‘low-velocity’ 
approximation corresponds precisely to the procedure of truncating the operator 
expression (5.13) at terms in D 2 .  

Writing the left-hand side expression to lowest order with 

z(x) ex2 N 1 + 2x2 ; ex2 2: 1 + x 2  (6.1) 
and observing that these imply the corresponding Fourier transforms 

F[z(x) ex2$(x)] N (1 - 2D2)$(k) 

F[ex2$(x)] = (1 -D2)$ (k )  
and 

we see that the result of applying such an approximation is indeed equivalent to trunca- 
tion of the operators lFl(l, i; -0’) and e-D2 at the second derivative terms : 

lFl(l,t; -0’) N 1-2D2;  e-D2 N 1 - ~ 2 .  (6.4) 

Applying these approximations consistently to the operators in equation (5.13), we 
obtain the relatively simple second-order differential equation? 

-+ d2* 86“’) * = 0. 
dk2 2 - 1  

Making the substitutions 

(2 - 41’4 I + 4 b 2  
2b ’ = 2b2{2(2-1)}1’2 k = v(; v =  

t It should be noted here that the low-velocity approximation we have used here is somewhat different in 
character from that used by KuXer and Comgold (1966) when treating the three-dimensional Wiper-Wilkins 
kernel for the hard-sphere gas. Their modification of the kemel is equivalent to restricting attention to 
transitions in a region where both x and y z 0. By contrast, we assume that only x is small while y in effect 
retains its whole range - 00 to CO. The KuSEer-Corngold method does not, in fact, appear to work when 
applied to the Rayleigh kernel. 
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this then comes into the form of the Hermite equation 

d2$ 
-+(c-C2)$ = 0. 
dC2 

For the solution to be Fourier invertible (meaning in the present context invertible into 
an L2( - a, x) function) it must be bounded at infinity, a condition which, as is well 
known, is only possible so long as 

c = 2 n + l ;  n = 0 , 1 , 2  ,.... (6.8) 
The eigenfunctions are then 

and give the Fourier inverse 

$,(x) = exp( -)xzv,2)H,(v,x). (6.10) 

Here we refer to specific discrete eigenvalues v, connecting with the original ones A, 
through v, = (2-An)1/4/2b. The A,, themselves, which are clearly approximations to the 
discrete spectrum of the integral operator in (2.12), are now determined through the 
conditions (6.6) and (6.8) as 

A, = 4b2[(2n + 1) { 1 + 2b2 + b4(2n + 1)’)’/’ - b2(2n + 1)’ - 11. (6.11) 

Finally we note that the original eigenfunctions &(x) are given by 

= ~ X P {  --IX 1 2 2  (vn - l)}Hn(vnx) (6.12) 

to within a normalization factor. 
Once again it is important to stress that, in contrast to other approximations such 

as the Rayleigh-Fokker-Planck equation (see 4 9), the eigenvalue equation (6.5) remains 
singular in character and retains definite information about the continuum threshold. 
Taking the transition to singular solutions as indicated by the failure of the Fourier 
inversion, we see from (6.5) and (6.6) that this occurs as soon as v becomes complex, 
that is, for A > 2. Thus the truncation procedure, while preserving the continuum 
solutions, appears to move their threshold from ,I* = 1 to A* = 2, a relatively minor 
effect compared to the removal to infinity brought about by the RFP operatort. 

Returning now to the eigenvalue expression (6.11) we see that the condition for 
discreteness A < 1 implies a definite limit to the number of such eigenvalues. Working 

Although treatment of the continuum solutions has been excluded here, we may note in passing that, for 
I > 2, a different change of variables is called for. Putting 

we are led this time to the equation 

d2$ 
-+(TZ-c)$ = 0. 
d t 2  

It is well-known that the spectrum of this equation is continuous and that the solutions are non-square- 
integrable (see Titchmarsh 1962, p 107). 
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this out we obtain an apparent bound to the total number of discrete eigenvalues, N ,  
as a function of mass ratio : 

At the same time we may extract a condition 
follows: 

(Y 1). (6.13) 

for emptiness of the discretum ( N  2 1) as 

(6.14) 

Although both these bounds remain tentative, in the sense that they depend on the 
nature and direction of the change in the spectrum brought about by truncation of the 
full operators in equation (5.13), they are suggestive of two quite definite qualitative 
properties. (a) That the discrete spectrum is finite and shows no point of accumulation. 
(b) That there exists a range of mass ratio for which the discrete spectrum is entirely 
empty between Io = 0 and I* = 1. If proved unconditionally, these properties would 
set the Rayleigh piston model apart from its higher-dimensional analogue, the hard- 
sphere gas, for which neither proposition holds. (See KuSEer and Corngold 1965, 
Hoare 1971.) 

In the next section we shall go on to prove our most important result, namely that 
the finiteness of the discrete spectrum holds good for the complete Rayleigh operator. 
It will not be possible to prove here that condition (b) holds rigorously, or to demonstrate 
that the bound (6.13) is definitely not weakened on going to the full operator. Neverthe- 
less, we are able to show that, for the special case y = 1, the discretum is definitely 
empty (N(1) = 0) while, for y + 0, N becomes arbitrarily large. 

Before continuing, however, we must settle the question of the Lorentz regime ( y  > 1) 
for which the above proofs do not apply in the form given. Fortunately a simple 
modification suffices. To retain a negative exponent in the kernel as written in equation 
(2.9), the constant p must be replaced by p' = $( l -  l/yz). This leads to a different 
factor from the integration (5.7) and a modified independent variable in the resulting 
function lFl. However, on interpreting the equivalent of equation (6.5) it is found 
that all previous results are recovered, with the single difference that, wherever it 
occurs, the mass ratio y is replaced by l /y .  

It follows that the bound (6.13) can be rewritten 

(6.15) 

while the condition for emptiness of the discretum becomes 

{3(,,b- 1 ) l - I  < y < 3($- 1). (6.16) 

Since the extension to the regime y > 1 can always be made in the manner described, 

The approximate eigenvalues I ,  are plotted as functions of y for the extended range 
we shall leave this to be understood throughout the proofs which now follow. 

in figure 4. 
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Figure 4. Approximate discrete eigenvalues for the Rayleigh piston according to equation 
(6.5) (full curves) and the Rayleigh-Fokker-Planck equation (broken curves). Only the 
first five nonzero eigenvalues are shown, for the mass-ratio range y < 1. Note how the first 
eigenvalue enters the continuum top left, leaving the discretum empty in the range 
04047.. . < y < 1. The full curves for y > 1 are simply reflections about the vertical axis, 
on the logarithmic scale. 

7. The full eigenvalue equation 

In this section we shall carry out a qualitative analysis of the full differential eigenvalue 
equation and prove the main result that its discrete spectrum is finite. 

We first split the operators exp( -0') and lFl( l ,+;  -0') in the following manner: 

W 

(7.1) 

(7.2) 

e-D2 = 1 - ~ 2 +  C - (- 1YD2" 
n = 2  n! 

a) 

( - 1)" 02".  J1(1,i; - 0 2 )  = 1-202+ 1 - 
n = 2  ($In 

Repeating the substitutions (6.6) the operator equation (5.13) can now be written 

c$(<) = To$+ Tl$ (7.3) 
where 

(7.4) T o =  --+< d2 2 

T , = - C -  b2"H2,(bv0+- C ( -  1) p p. 

d<' 
and 

(7.5) 
v2 O0 na2n d2" -$ m ('-1)" 

2-1n=2 ( i )n 2-fln=, 
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Here the coefficients azn are given by 

1 1  a,, = 
($1" n !  

and the other parameters are as defined previously (for y < 1). It is a simple matter 
to show that, for 1 < 1, a,, > 0 for all n 2 0 and also that a2n+2/a2n < 1 for 0 < 1 < 1 
and n 2 1. 

Let us now define a subspace S of L2( - 00, CO) consisting of functions $(<) which 
satisfy the conditions 

(i) $(<) is infinitely differentiable. 

(ii) I$(,)(t)l < c, exp(-m2t2) 

where m2 > $b2vZ and C, is a finite constant for all q. Here the superscript on $ implies 
its qth derivative. 

Now it can easily be seen that the truncated Tl operator with N terms is self-adjoint, 
in as much as it is a series in the self-adjoint operator - D2 and Tl$ is meaningful. These 
properties remain in the limit N -, 00, Tl$ being still meaningful and the domain of 
Tl again S by virtue of the conditions (i) and (iii). 

The key result which we now have to prove is that TI is bounded in S .  We have, for 
any 4(5) E s : 

+ m  

where we have made the assumption, justifiable in view of uniform convergence, that 
the integration and summation operations are interchangeable. Now 

and hence 

with C a finite constant C, < C < CO. In a similar way 

since 2m2 > b2v2 and 2b2 < 1. Hence (4, T14) is finite and we can further write for the 
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norm 11 T, 11 = t ,  with t ,  a finite constant depending only on v. The limiting behaviour for 
large v is then easily seen to be 

We are now in a position to exploit the crucial theorem : 
Let To be self-adjoint and T, be symmetric. Then T = To+ TI is self-adjoint and 

moreover 

dis t (W),  C(T0)) G 1 1  TI I/ 

where C(T)  and C(To) are the spectra of T and To respectively (Kato 1966, p 291)t. 
But we have seen in the previous section that the spectrum of the truncated operator 

To in (7.4) is finite in the discretum range I < 1. The theorem just stated thus implies 
that the complete operator To + T, has precisely the same behaviour. 

The status of the other results derived in 0 6, particularly the bounds (6.15) and (6.16), 
must now be considered. Obviously it would be desirable to show that, on addition of 
the perturbation TI, the eigenvalues of the truncated operator To are shifted upwards, in 
which case the bounds would stand and perhaps be improved. Unfortunately this would 
require us to show that is positive dejinite, a considerably more difficult proposition 
than the proof that it is bounded. We have not been able to discover such a proof and 
must therefore reluctantly leave the bounds as tentative ones so far as the spectrum of the 
full integral operator is concerned. 

8. The special case y = 1 

Since we shall later study this special case in considerable detail in connection with the 
continuous spectrum, we shall only sketch here the proof of the important result that, 
when both test particle and heat-bath particles have equal mass, the discrete spectrum 
of the Rayleigh integral operator is empty. 

The condition y = 1 corresponds to the well known mechanical curiosity in which 
objects of symmetrical mass and shape simply exchange their respective velocities on 
colliding along their line of centres. At first sight this would appear to indicate that the 
test particles become thermalized according to a simple Poisson process with a single 
relaxation time. The equilibration of an ensemble with specified P(V, 0) is, however, 
much more complicated than this, for the reason that the faster test particles tend to 
collide sooner and have an enhanced probability of making a head-on collision leading to 
a reversal of their direction. The resulting solution is far from trivial. 

When we set y = 1, the symmetrized kernel g(x, y )  takes the very simple form 

This has the character of a Green function for a second-order differential equation and 
the eigenvalue problem (2.12) is readily cast into this form on using the symbolic opera- 
tions: (d/dx)lx-yl = U(x-y) and (d2/dx2)1x-yl = 26(x-y). The result, which is 
somewhat similar to the Wigner-Wilkins equation for the hard-sphere gas (see Williams 

t The function dist( , ) is to be interpreted as taking the value m a x i  lli -Ail where Ai, li are corresponding 
eigenvalues in the spectra under comparison. 
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1966, p 75) is found to be 

d2 - {(z(x)- 1) exp(ix2)&x)} - 2 exp( -+x’)+(x) = 0. 
dx2 

Using the result (4.2), one solution of this follows immediately as 4(x) = exp(-ix’), 
evidently corresponding to 3, = 0. A second, independent solution can then be found, 
leading to the general solution 

d(x, A) = exp( -ix2) A + B ( r (z(Y;: 112)  * 

This is clearly singular for 3, > z(0) = 1. Leaving aside the singular solutions, we concen- 
trate here on the question of whether solutions of the integral eigenvalue equation with 
A < 1, other than the trivial lo = 0, can exist. 

To decide this the solution (8.3) is substituted back into the integral equation and the 
conditions imposed on the two constants A and B are examined. After some manipula- 
tions, an identity is obtained which can only be satisfied by simultaneously fixing 
A = B = 0. Thus we are forced to conclude that the discretum is empty for 0 -= A < 1 
and that all transients in the relaxation problem arise from continuum modes with 
3, 2 1. This is consistent with the tentative bound (6.16). 

9. The Rayleigh-Fokker-Planck equation 

Rayleigh’s original solution (1.1) was obtained by an ingenious manipulation of the 
transport equation (2.1) using the condition y << 1 to reduce its right-hand side to a 
second-order differential expression. His approximate equation, when rewritten in 
terms of our variables x and T, takes the very simple form 

(9.1) 

This clearly invites a further transformation of time scale by a factor involving the mass 
ratio: zR = 4yr as in (1.1). 

Subsequent workers have made Rayleigh’s procedure more systematic, though 
scarcely more rigorous. In modern terms the above is seen as a special example of the 
Fokker-Plank equation, whose form may be prescribed in a well known way through the 
moments of the transition kernel k(x, y) reduced to lowest order in y. Nevertheless, 
despite considerable attention in the last thirty years (see particularly Kramers 1940, 
Moyal 1949, Keilson and Storer 1952, Van Kampen 1961, Akama and Siege1 1965a,b), 
very little can be said about the validity or accuracy of the symbolic replacement 

y a2 a 
2 a x 2  ax (4y)-1d 1 w = - -+x-+ 1 

in the full transport equation (2.1) with the Rayleigh kernel. 
Although we hesitate to enter the general discussion of the foundations of the Fokker- 

Planck equation, it seems of interest to re-derive the Rayleigh solution, using the results of 
our 0 7, and perhaps shed new light on the nature of the limiting processes involved. 
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Rayleigh’s solution may be presented in eigenfunction form by noticing that the 
equation 9t$~f(x) = I:#(x) has the complete set of solutions 

with 

n; = 0,1,2. . . . (9.3) 

The initial-value solution for P(x,  0) = 6(x - xo) then follows as 

The summation may be evaluated using Mehler’s formula (Erdelyi 1953, vol 2, p 194) 
and yields the scaled form of equation (1.1) (cf Uhlenbeck and Ornstein 1930, p 839). 

That this also follows from our development, can be seen on observing the effect of the 
limit y + 0 on the various quantities defined in Q 7. 

We observe first that 

b2 = 9~ + O(y) 

so that, interpreting equation (6.1 1) to lowest order, 

In = 4ny + O(y2), 

in agreement with (9.3). (We note, however, the quite essential implication that n has a 
given, jnite value throughout.) It then follows immediately that 

vn = y- 1’2(1+ O(y)). 

Entering these results into the solution (6.12) we evidently recover the Rayleigh 
eigenfunctions in the limit of small y. What is more important, however, is that our 
previously-developed bound for the norm of the truncated part of the full Rayleigh 
operator can now be written 

II Tl I1 = o(v-2) = O(Y). 

This result, though far short of a complete justification of the Rayleigh-Fokker-Planck 
equation, would seem to contain the essence of its validity as an approximation. 

At the same time we can see why it has been possible for the authors of the treatments 
cited earlier to ignore the existence of the continuum altogether in their discussion of 
brownian motion. By scaling time in terms of the mass ratio, tR = 4yt, the continuum 
transients exp( - A t )  with I > I* = 1 are automatically suppressed in the limit y -, 0. 
Needless to say this is a distortion of reality when y is a small but finite quantity and the 
Rayleigh-Fokker-Planck equation is meant as a working approximation. In this case 
we are forced to recognize that, in the Rayleigh time scale, the continuum threshold is, in 
fact, only displaced to I* = (4y)- and that the eigenvalues I: must cross it and lose 
their normal significance for values of the index n > (4y)- ’. This property, along with the 
systematic divergence between the eigenvalues from equation (9.1) and those of the 
alternative (6.5) is also illustrated in figure 4. Here it may be seen that, in general, the 
Rayleigh eigenvalues disappear into the continuum at lower values than do those of our 
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equation, the discrepancy becoming increasingly marked for the smallest n values. In 
this respect, the general pattern of results from equation (6.5) is reminiscent of those 
obtained elsewhere in numerical Rayleigh-Ritz calculations on the three-dimensional 
hard-sphere system (see Hoare and Kaplinsky 1970). 
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